Semidominant mutations in reduced epidermal fluorescence 4 reduce phenylpropanoid content in Arabidopsis.
نویسندگان
چکیده
Plants synthesize an array of natural products that play diverse roles in growth, development, and defense. The plant-specific phenylpropanoid metabolic pathway produces as some of its major products flavonoids, monolignols, and hydroxycinnamic- acid conjugates. The reduced epidermal fluorescence 4 (ref4) mutant is partially dwarfed and accumulates reduced quantities of all phenylpropanoid-pathway end products. Further, plants heterozygous for ref4 exhibit intermediate growth and phenylpropanoid-related phenotypes, suggesting that these mutations are semidominant. The REF4 locus (At2g48110) was cloned by a combined map- and sequencing-based approach and was found to encode a large integral membrane protein that is unique to plants. The mutations in all ref4 alleles cause substitutions in conserved amino acids that are located adjacent to predicted transmembrane regions. Expression of the ref4-3 allele in wild-type and null REF4 plants caused reductions in sinapoylmalate content, lignin content, and growth, demonstrating that the mutant alleles are truly semidominant. Further, a suppressor mutant was isolated that abolishes a WW protein-protein interaction domain that may be important for REF4 function.
منابع مشابه
Mutations that reduce sinapoylmalate accumulation in Arabidopsis thaliana define loci with diverse roles in phenylpropanoid metabolism.
The products of phenylpropanoid metabolism in Arabidopsis include the three fluorescent sinapate esters sinapoylglucose, sinapoylmalate, and sinapoylcholine. The sinapoylmalate that accumulates in cotyledons and leaves causes these organs to appear blue-green under ultraviolet (UV) illumination. To find novel genes acting in phenylpropanoid metabolism, Arabidopsis seedlings were screened under ...
متن کاملIdentification and Characterization of LHCB1 Co-Suppressed Line in Arabidopsis
To explore the function of light-harvesting complex protein (LHCP) in Arabidopsis growth and development, the Leclere and Bartel seed collection was screened. In this collection randomly cloned cDNAs are expressed under the CaMV35S promoter. A pale green line has been identified and characterized in more details. Analysis of the inserted cDNA in the pale green line showed it encodes LHCB1 prote...
متن کاملIndole Glucosinolate Biosynthesis Limits Phenylpropanoid Accumulation in Arabidopsis thaliana.
Plants produce an array of metabolites (including lignin monomers and soluble UV-protective metabolites) from phenylalanine through the phenylpropanoid biosynthetic pathway. A subset of plants, including many related to Arabidopsis thaliana, synthesizes glucosinolates, nitrogen- and sulfur-containing secondary metabolites that serve as components of a plant defense system that deters herbivores...
متن کاملChemically induced conditional rescue of the reduced epidermal fluorescence8 mutant of Arabidopsis reveals rapid restoration of growth and selective turnover of secondary metabolite pools.
The phenylpropanoid pathway is responsible for the biosynthesis of diverse and important secondary metabolites including lignin and flavonoids. The reduced epidermal fluorescence8 (ref8) mutant of Arabidopsis (Arabidopsis thaliana), which is defective in a lignin biosynthetic enzyme p-coumaroyl shikimate 3'-hydroxylase (C3'H), exhibits severe dwarfism and sterility. To better understand the imp...
متن کاملReprogramming the phenylpropanoid metabolism in seeds of oilseed rape by suppressing the orthologs of reduced epidermal fluorescence1.
As a result of the phenylpropanoid pathway, many Brassicaceae produce considerable amounts of soluble hydroxycinnamate conjugates, mainly sinapate esters. From oilseed rape (Brassica napus), we cloned two orthologs of the Arabidopsis (Arabidopsis thaliana) gene reduced epidermal fluorescence1 (REF1) encoding a coniferaldehyde/sinapaldehyde dehydrogenase. The enzyme is involved in the formation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 178 4 شماره
صفحات -
تاریخ انتشار 2008